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POISSON SET OF CRACKS I

The method of effective (self-consistent) field is used for solving the problem of

a random set of interacting cracks in an elastic medium., Construction of the first

moment of solution is shown on the example of a medium containing Poisson setof plane
elliptic cracks. Effective elastic constants of a medium with cracks are determined and
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In a number of publications on the mechanics of inhomogeneous elastic media /1~3/ self=-
consistent solutions were derived on the assumption that each typical inhomogeneity (a poly-
crystal grain, inclusion in the composite, or crack) behaves as an isolated one in an
otherwise homogeneous medium whose properties are the same as the effective properties of the
whole medium, with the field containing any inhomogeneity assumed equal to the external field.
This modification of the self-consistency method is sometimes called the method of effective
medium.

Another scheme of solution derivation may be proposed in which every typical particle
(inhomogeneity) is considered as isolated in the base medium (matrix) of known properties and

i i +h o e al FiatAa
the presence of surrounding particles taken into account by the effective external field con-~

taining that particle. A similar scheme, called below the method of the effective field, is
developed here. (Such method was used in /4/ for investigating an elastic composite medium).

1. Let us consider a homogeneous three-dimensional elastic body containing a set of
arbitrarily situated cracks— slits along smooth oriented surfaces whose sdges are for simpl-
lcity considered to be free of external loads.

In a number of cases of practical interest crack dimensions and the distance between them
are considerably smaller than the dimensions of the body and the characteristic scale of the
external field. Because of this, an unbounded elastic medium with cracks in a constant exter-
nal stress field induced by loads applied at infinity is considered below.

As shown in /5/, an adequate model of a crack is a surface which carried dislocation
density moments g {x) ba (z), where n{z) is a normal to the crack surface QO and b (2)is the
vector of the dlsplacement jump at transition through Q {(x(x,.r,.x;) is a point of the medium)
Any arbitrary set of cracks in a homogeneous medium may be considered as the distribu-
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tion density moments m (¥} of the form
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m(z)={m® (@), mi(@)=ng" (28§ (z) A (z) (1.1)

where n'%'{r) is the normal to the surface of the Xk-th crack Q, and £, (z) is the delta
function concentrated on @, (for the definition of (1, (x} see /6/, where this function is
denoted by 8 (&:)-

Vectors b (r) are jumps of displacement fields on L, that are to be determined by
solving the elastic problem for a medium with cracks. )

when M9 {z) are known, then, using the continuum theory of dislocation /6/, the stress
g {r} and strain {7} fields in a medium with cracks can be determined using formulas

- o aa . . e . v P P
0P (2) = 057 + [ S92 — 2y man ()62 2ap (2) == Coap + ) Kapra (2 — 2) Py, (27) de (1.2

where ¢, and €, are, respectively,the stress and strain fields, o, = ey, 3  is the
tensor of the homogeneocus medium elasticity moduli, and m (7) is of the form (1.1).

The kernels of integral operators 3 and K in (1.2) are expressed in terms of second
derivatives of Green's function G (z) of the homogeneous medium

SaBML (7} = XBWK o0 (2) 0B 238 (), K g (2) = —{VaVaGau (D haziam (2.3

where 6 (xr) is the Dirac delta function and V is the gradient operator in the three-dimens-
ional Euclidean space R?,
It follows from (1.3) that S (z)and K (r)are generalized homogeneous functions of power — 3.
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Let us consider the properties of operators § and K in (1.2). They are convolution
operators with generalized functions S (z) and K (z). In functions of class § (R3) (as
|z |—o0 they decrease more rapidly than any power of |z ) S and K admit the regular rep-
resentations /7/

(S—2)p@)dr' =[S @—~2)9@)dz' + Do) (1.4)
SK(z—x’)C(p(x’)dz’=SK(x—z’)ccp(x’)dx' + Ace (2) (1.5)

where (¢ = S (R?%) and the integrals on the right exist and are taken in the sense of Cauchy's
principal value, the constant tensors D and A are expressed in terms of Fourier transforms
S(k) and K (k) and of functions §(z) and K (z} by formulas

b 1 '
D=T“—QSS(k)dQ, A=FQ§K(k)dQ (1.6)

where £, is the surface of a unit sphere in the k-th space of Fourier transforms.
Let us now determine the effect of the action of operators § and K on the constant m,.
The respective integrals formally diverge at zero and infinity. Note that the integrals

§ S(r—zYmedz’, | K(z— z')emyda’

have the meaning of the fields of internal stresses and strains, respectively, in a homogene-
ous medium containing dislocation moments of constant density m,. If the medium deformation
is not constrained at infinity, such distribution of dislocations does not result in the ap-
pearance of internal stresses, but induces an additional constant ("plastic") deformation of
the medium of magnitude equal to m,. Consequently in this case

SS(z—x’)modz'=0, SK(I—I')CIIIodx"'—: me (1.7)

However, if the medium deformation is constrained at infinity, the result is obviously
different. There is no unambiguous natural definition of operators S an K constants, and
in specific problems the respective integrals are determined by their particular meaning.

On the assumption that deformations are not constrained at infinity, we use below form-
ulas (1.7) and consider only homogeneous random crack sets in space. The density m (x) in
(1.2) is alsoc a generalized homogeneous random field.

It can be shown that formulas (l1.4)— (1.7) are sufficient for determining operators S
and K on smooth homogeneous random functions. 1In the model of the random field m (z) these
operators are continuously extended.

2. Let us take one of the typical models of random crack sets homogeneous in space, and
consider an arbitrary crack numbered i. If functions m® (z) defined by formula (1.1l) and
appropriate to the considered model are known, the field 0, (z) that contains the -th crack
is by virtue of the first of formulas (1.2) of the form

G@=0c0+ 3 (SE—a)m» (2)dz, z=Q (2.1)

ki

The field ©,;(x) defined by this formula at points of surface Q; can be taken as the
external field of the i -th crack in which it behaves an an isolated one.

Let us assume that the solution of the elastic problem for a crack isolated in an arbit-
rary external field 0, (z) is known. This implies that function m® (z.3),) is known in ex-
plicit form. The system of equations that satisfies fields T, (z) for each of the interacting
cracks then follows from (2.1) and is of the fomm

G@=00+ 2 [ SE—2)m® (z,50d2', zeQi i=1,2,... (2.2)
X3

When the solution of this system is known, it is possible to obtain from (1.2) the stres-
ses and strains in a medium with cracks. Fields G, (x) may be considered as the basic unknowns
of the problem.

If the crack set is random, ©;{(r) are random functions. The construction of statistical
moments of fields &, (z) reduces to solving the problem of interaction between many cracks,
which involves virtually unsurmountable difficulties. To make the problem more tractable it
is necessary to introduce simplifying assumptions about the structure of random fields G, (1).

We shall assume the field ©;(z) to be virtually constant in region ; but, generally,
different for individual cracks (hypothesis H,;) and consider all cracks to be plane and of
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elliptic form.
The solution of the problem of an isclated elliptic crack in a constant external stress
field G, shows that the quantities m®) (z, §4) in (2.2) are determined by formulas

My (2,0%) = PG (2) 0 (2),  PY) (z) = PPy (2) (2.3)

where the scalar function /%, (z) determined at points of surface Q, in the system of coordin-
ates z,,r, attached to the principal axes of the crack is of the form

- 2 s

[ 2 2 \i/2
hk Zy 1’:) =-—1r-—(1 O | _2_\
(T1, b 0,7 bkg)

where a, and b, are semiaxes of the ellipse Q,,a, > b,.
The constant tensor PW® in (2.3) is of the form

Y lE) Ilr\

Pl =nigTHan (2.4)
where for an isotropic medium 1%.{2 is of the form (no summation with respect to al)

24,2
(k) k. il—v
Taﬂ = T m d;l6aﬂ

dy=c¢, +vic,—2¢), d=c +vic;—2¢c), dy =¢,2

cg = ~—¢c; + 3¢,

e. = E ()1 — ﬂz o, = 0 we (F (02 e K (W /2
‘1 =&/ €2 ‘i (S A S A
a =1 — (by/ay)?

where p is the shear modulus, v is the Poisson’s ratio of the medium, 084 is the Kronecker
delta, and E (a) and K (a) are complete elliptic integrals of the first and second kind.

We introduce the following notation: Q for a set of crack surfaces in space, and Q (z)
for the delta function concentrated on . We fix some point z,6&sQ and define region @,
by the formula

We denote the delta function concentrated on 9“ by Q(ze 7).
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(2.3)). We introduce the field T (z) defined in region Q by the equation

_— Loy B YL Ve W4 NI —_— =0

c{@) =0y +yS{z—z)PE)o@)ix, z)az’, z & Q (2.5}

The comparison with (2.2) and (2.3) shows that when the H; hypothesis holds, the field
G (z) coincides in regions Q. with 0. We call 7 (z) the effective field for a given set of
cracks.

In the first approximation it is possible to assume that the effective field 3(z) is
constant and the same for all cracks (a similar idea was used in /9,10/ for solving the prob-
lem of wave propagation in a medium with random inhomogeneities). Thxs assumption is evidently
valid when the field of each crack weakly depends on the configuration of the set of surfaces

Q‘h and is determined by the average combined field of all interacting cracks. Then, by

exrmined Then,

averaging over the ensemble of models of random crack sets under the condition that e Q.
we obtain

T—o,+{SE—2)<PER () |z>dT (2.6)

where it is taken into consideration that & = const for 2z & Q, and (- |z) implies averaging
under the condition that z& Q.

The problem has been, thus, reduced to the construction and calculation of the integral
in (2.6). Since for a uniform field of cracks the average of the integrand which is a funec-
tion of the remainder z — z’, the integral is some constant. Solving (2.6) for the tensor ©
we obtain

Geb = 1'\%&607»;1 (2.7)
=l =8 —2)< P )Rz z) [z>d’™ (2.8)

where / is a unit tensor of the fourth rank.
Let us determine the mathematical expectations of the stress and strain fields in a med-
ium with cracks. Substituting m® (z, 5) of form (2.3) into (1.1) and, then, its result into

JER 1

(1.2), and averaging the obtained expressions for o {z) and ¢ (z) over the ensemble of crack sets,
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we obtain

G (@) =6+ 8 (z—2) (P @) ()) dzF, <&@ =g+ [ K(z—2)(P Q) dT (2.9

For a set of cracks uniform in space the average (P (z)Q{(z)) is a constant quantity. The
action of operators S and K on constants is determined by formulas (1.7}, hence from (2.9)
follows that

(o {2)) = 0o (E(2)) =€ + (P (D)Q ()T (2.10)

We introduce the effective compliance tensor B, for a medium with cracks by the natural
relation

(&) = B, (o} (2.1
which together with (2.10) and (2.7} yields the equality

B,=B-+<(P(@DR@> A, B=c? (2.12)

where A is of the form . (2.8).

Let us compare the method of effective field for determining the tensor of effective
elastic constants with the method of effective medium /i~ 3/ based on the assumption that each
crack behaves as an isolated one in a homogeneous medium whose properties are the same as the
effective properties of the whole medium with cracks. The external field of any crack is as-
sumed equal to 0,

On these assumptions formulas (1.2) for o (r) and ¢ (z) in the case of a medium with ellip-
tic cracks assume the form

o {z)=0,} fS(x——-z’) P (z)Q(x'Ydr'0s, £(z)=8o+ S K{z—z)eP (2)Q (z)d2'6, (2.13)
Py(@)Q(z)= % P (@) U (2)

where functions P,® (z) , although of a form similar to that shown in (2.3), are determined by
solving the problem of an isclated elliptic crack in a homogeneous medium with the elastic
pliability tensor B,. The equation for B, is obtained from the self-consistency condition
which conforms to (2.11). Averaging expressions (2.13} for ¢ (z) and & (z), then acting by
operators S and K on the constant (P, () (z)} . and substituting the result into (2.11), we
obtain

B, = B + (P, ()2 (z)) (2.14)

This relation which links the components of tensor B, is to be considered as the equation
of the effective elastic constants of a medium with cracks (these constants appear in the right-
hand side of this equation because of the tensor P, (x) whose explicit expression is assumed
known) .

3. Let us analyze some specific models of random crack sets in space. The ergodicity of
the considered random functions assumed below, enables us to substitute averages over volume
for averages over ensembles of models for a fixed typical model. Thus, for example,

N N
: : i .
(P (a)) == hm-:—S E PR () Q, (z)dz = 31m - 2 .Z’T'_.a,,spm (3.1)
henandBE /Al wer} e =1

where 17 is a region of volume v in R3®, which at the limit occupies the whole space, N is
the number of cracks contained in V¥V, and P® (z) and P are of the form appearing in (2.3)
and (2.4).

In the ensemble of models of the random field P (2)Q(z) tensors 4 P®) are random quant-
ities with one and the same distribution function for all k. Averaging once more both sides
of (3.1) over the ensemble of models, we obtain

P (@R @) = lim +{FaP@, By= -§.:";. <P (a, b)> (3.2)

where v, 1is the average volume of a single crack. The average random tensoxr gipP (a, b), where
P (a, b), which appears here in the right-hand side, is of the same form as P ; its value is
determined by the distribution of random semiaxes a« and p and of its random orientation.

Let us consider the conditional average in (2.6) and {2.8). By the definition of the
condition mean we have Py Qz 2 Q L)y

Fa—a)=RE)@ma) = @@ (3.3)
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Similarly to (3.1) we have

1 . P
Q@) =n<abswe, ¥ (@) =ity lim o x \S P(z—2)Q(': ¥ —2)Q () d’ (3.4)

Let us consider some examples of stochastic crack sets in space.

1°. The Poisson set of cracks. Let the bounded volume V contain N cracks whose
dimensions and orientations are random quantities with known distribution functions. The
coordinates of crack centers are independent random quantities uniformly distributed in V.
Making V and N approach infinity so that v/ N — v, <00, we obtain a set of cracks which is
uniform in space, which we shall call the Poisson set. By virtue of the uncorrelated position
of crack centers in the Poisson set we have

(P (z)Q (z; 2)R2(2)> = (P (2R (15 ') (Q (2)> (3.5}
where similarly to (3.1}
N
‘ e e i R TN 25
(P @)@ 7)) =lim —v-; FokP® = X <aP (g, b)) (3.6)

wvhere the prime at the summation symbol means the omission of the term Ta;P“’ for & 9,
as implied by the definition of function Q (z;2').

Thus generally W (x) = const (except for the set of points z of zero measure). By virtue
of (1.7) the integral in (2.6) and (2.8) vanishes, and formulas (2.12) for B,assumes the form

, %

B*aB ~+ T {a’P (a, b} (3.7
in which allowance is made for (3.2).

In the case of circular cracks of random radius a in an isotropic medium from this form-

ula we obtain

.
By=B— oty 1{5 @ —v@ (>, g=-- ANER:

Qaprs = namBpy + ramudp, + nemdan + nemudar, Qagay = nangmny
in which summation is carried out with respect to random orientation of cracks n (the random
quantity ¢ is assumed independent of n).
When the distribution with respect to orientations is uniform, B, is an isotropic tensor,
and the effective shear modulus p, and the Poisson’s ratic v, of a medium with cracks assume
the form

p,,:—-p.[‘l ! 7-5_ = (Zvlsv) ﬂ} ' i:—*v*m 1:—\: [14'*5"(1 i2 - ] (3.9)
29, Model with restriction on crack intersection. Let us consider a Poisson's
model with one additional condition. Let the neighborhood (for instance, spherical) of each
crack be such that the probability of other crack centers reaching it is small, and a short-
range order obtains in the random set of cracks. Function ¥ (z) defined by formulas (3.3) is
zero in some neighborhood of the coordinate origin {(point z=90). As |z —z |~ o0 the cor-
relation of crack positions vanishes and

x L (a%P (a, b)) =

{the quantity ¥, is the same as ¥ (z) for the Poisson set of cracks {3.8)).

when the crack concentration is not excesszve, then, owing to the isotropy of the model,
¥ (z), spherically symmetric ¥ (z) =¥ (|/r|) and the integral in (2.6} and (2.8) is of a part-
icularly simple form

§S(x—2Wi(x— Yz = § § (z — )Y (2 — z') — ¥,ldz’ = —DV¥,

where allowance is made for formulas (1.4) and (1.7), tensor D is of the form (1.6), and the
integral appearing in (1.4) in the sense of principal value vanishes owing to the spherical

symmetry of ¥ ().
For B, we obtain from {2.1) an expression of the form

B, _B+—7- e3P (a, b)>[1—-3-~D (a®P (a, b)> ]
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In the case of an isotropic medium and uniform orientation distribution we obtain from
this

BB 1= g W8 — Wy v P} 32, 0 oy n .10
Bo=B+ 4 s(z—w T8 x[ e "”] (3.10

FERES ? (Buadpp + BB} Taprn==Bapbiy

s-—-‘w)Sov»v = 3[2% q<5-—v _‘{_10\’)

(2w} 2—v

where ¢ is the same as in (3.8).

The above formulas were derived on the assumption that all cracks expand in the external
stress field. But this is not true for all external fields. A part of the cracks or evenall
of them may close, thus affecting the effective elastic constants. A method for allowing for
cracks closed by the external field was considered in /11/.

Let us now consider the formula provided by the method of effective medium for the ten-
sor of effective elastic constants. EBEguation (2.14) with allowance For (3.2) is of the form

By=B _ﬁg. <8P (8, B) ) . (3.11)
¢

where P, is determined from the solution of the problem of an elliptic ¢rack in a medium with

the elasticity tensor B,

Let an isotropic medium contain a homogeneous set of circular cracks uniformly distribut-
ed with respect to orientation. The medium is assumed macroisentropic¢ and B, defined by form-~
ula of the form

i—’\g

B*““*B+_§'§P#: i&“’“ﬁ""m"‘iva —2(B—v i1

where the guantities ¢, 7%, J* are those defined in (3.8} and {(3.10).
From this, for the effective elastic constants u, and v, of a medium with cracks, we
obtain formulas

" 32 (1—w)(5~—v) 45 (v = va)(2 — va)
=l e T T T AT — (] (.12

of which the last may be considered as the eguation for v,. This result was obtained in /3/.
It was noted in /3/ that for g¢=%, the shear modulus p, in {3.12) becomes negative, and
these formulas loose any physical meaning. Note that p, and v, calculated by the method of
effective field in the case of a Poisson set of cracks (3.9) are always positive. In the case
of a mode) with restriction on crack intersections the components of B, (in (3.10)) vanish for
¢2=2 s0 that also here the region, where the method of effective field yield physically
inconsistent results, is one and a half times wider. {(For small ¢ both methods yield the
same effective elastic constants). -
One more point should be mentioned. The construction of tensor P, and the solution of
Eq. (3.11) is technically extremely complivated in the vase of arbitrary anisotropy of tensor
B,. DBevause of this, the method of effective medium is applied only when an inhomogeneous
medium is macroisotropic. On the other hand, the method of effective field does not introduce
any additional technical difficulties in the determination of B, when applied to a macroaniso-
tropic medium.

4. YLet us now consider the plane problem. The formalism of the method of effective field
is applicable in the plane case without any fundamental alterations. Because of this ; We pres—
ent here only the final expressions for the effective elastic constants (the plane problem
was considered in detail in /12/).

In the plane case a straight slit ig the analog of the elliptic erack. For a Poisson set
of straight cracks of random length 2! uniformly distributed with respect to orientations the
medium is macroisctropic, and the Young's modulus £, and Poisson's ratic ¥y are of the form

%=J§.# ij_g , gae= ":)i” 4.1
where E and v are the elastic constants of the original isotropic medium, and @, is the
average area of a crack.,

For an initially isotropic medium model with restyiction on the intersection of cracks
uniformly distributed with respect to orientation, the effective elastic constants are deter—
mined by formulas
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Ee T, q {1 — 3¢/8) -1 )
£ ""P +Tﬁ'—-gf2x:—-q;4}} {4.2)
Ve o fx : 4.3

=L [ |

The curves 7, 2, and 3 shown in Fig.l represent, respectively, functions (4.1), {4.2) and
(4.3). They are compared there with experimental data cited in /13/. Experiments were car-
ried out on thin rubber sheets with a set of rectilinear through slits (v =05). Experimental
data are approximated by the dash line with small circles for

& g 1 (E4/E} and by dash-dot line for (v/v.
i i The statistical analysis shows that the set of cracks
] ; investigated in /13/ is satisfactorily defined by the model
i with restriction on crack intersections. The formulas for
0.5 ‘§\~£i the effective elastic constants obtained for this model are
; > in good agreement with experimental data.
‘ 2 \‘s?ahzlﬁz Note that in this case the method of effective medium
, i N vields for E, and v, the following expressions:
45 0 3

EE = fve1—q

Fig.l to which the straight line ¢ corresponds in Fig.l.

5. The method of effective field was used above for calculating the effective elastic
constants of a medium with cracks. The possibilities of this method are, however, not limited
to such cases. The method was applied in /14/ for constructing the first two statistical mom-
ents of the solution of the problem of constant electric current in a2 medium with a larxge
number of c¢racks. Besides the H, hypothesis on the constancy of the effective field for each
crack, the hypothesis of statistical independence of that field in region @ from the orient-
ation and size of the crack @, (the #, hypothesis) was used there. It is possible toobtain
on these assumptions closed equations for the second statistical moment of the effective field
and, then using it, toc determine the second statistical moment of solution. The' second moments
of the problem of the theory of elasticity considered here can be similarly obtained.

We stress that the hypotheses on which this method is based relate to the approximation
of the state of sach crack in an inhomogeneous medium. With increased crack concentration
these hypotheses provide an increasingly rought description of the state of cracks. However,
this may weakly affect the accuracy of determination of the first and second statistical mom~
ents of solution which are of the greatest interest in applicationg. These moments are in
themselves fairly rough statistical characteristics with part of the information about details
of crack behavior is certainly lost in them. Because of this an exact definition of the state
of each crack in the calculation of the first two moments of the solution is hardly justified.

As shown by the resulis of the present investigations and of those in/4,12/, the method
of effective field makes possible a satisfactory description of the results of experimental
determination of the effective elastie¢ constants and, also, provides a good correlation with
the exact values of these constants in the case of the lattice of inclusions and cracks in a
plane.
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