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THE POISSON SET OF CRACKS IN AN ELASTIC CONTINUOUS MEDIUM+ 

S. K. KANAUN 

The method of affective (self-consistent) field is used for solving the problem of 
a random set of interacting cracks in an elastic medium. Construction of the first 
moment of solution is shown on the example of a medium containingPoissonsetofplane 
elliptic cracks. Effective elastic constantsof amediuariithcracks aredeterminedand 
the results obtained in the plane case are compared with published experimental data. 

In a number Of publications on the mechanics of inhomogeneous elastic media /l-33/ self- 
consistent solutions were derived on the assumption that each typical inhomogeneity (a poly- 
crystal grain, inclusion Ln the composite, or crack) behaves as an isolated one in an 
Otherwise homogeneous medium whose properties are the same as the effective properties of the 
whole medium, with the field containing any inhomogeneity assumed equal to the external field. 
This modification Of the self-consistency method is sometimes called the method of effective 
medium. 

Another scheme Of solution derivation may be proposed in which every typical particle 
(inhomogeneity) is considered as isolated in the base medium (matrix) of known properties and 
the presence of surrounding particles taken into account by the effective external field con- 
taining that particle. A similar scheme, called below the method of the effective field, is 
developed here. (Such method was used In /4/ for investigating an elastic composite medium). 

1. Let us consider a homogeneous three-dimensional elastic body containing a set of 
arbitrarily situated cracks-s lits along smooth oriented surfaces whose edges are for simpl- 
icity considered to be free of external loads. 

In a number of cases of practical. interest crack dimensions and the distance betweenthem 
are considerably smaller than the dimensions of the body and the characteristic scale of the 
external field. Because of this, an unbounded elastic medium with cracks in a constant exter- 
nal stress field induced by loads applied at infinity is considered below. 

As shown in /S/, an adequate model, of a crack is a surface which carried dislocation 
density moments %((5)h8 (z). where n(s) is a normal. to the crack surface ft and Et(s) is the 
vector of the displacement jump at transition through 2 (t(q. 2,. x3) is a point of the medium) 

Any arbitrary set of cracks in a homogeneous medium may be considered as the distribu- 
tion of dislocation density moments m(+) of the form 

where #)(.r) is the normal to the surface of the fc-th crack Q& end n,(s) is the delta 

function concentrated on QJ, (for the definition of Gk (r) see /6/, where this function is 

denoted by S (Q,)). 
Vector5 W)(X) are jumps of displacement fields on Q,, that are to be determined by 

solving the elastic problem for a medium with cracks. 
whan h(k)(x) are known, then, using the continuum theory of dislocation /6/, the stress 

O(X) and strain E ix) fields in a medium with cracks can be determined using formulas 

(1.2) 

where a, and E0 are, respectively,the stress and strain fields, ~~~6 = dr~h~eO~, @@'@ is the 
tensor of the homogeneous medium elasticity moduli, and m(r) is of the form (1.1). 

The kernels of integral operators S and K in (1.2) are expressed in terms of second 
derivatives of Green's function G(x) of the homogeneous medium 

‘Fsw fz) = P@~&, (x)c=~ - PSW (2). KasXP (I) = -_(V,V&$3&8 @azQ&&) (1.3) 

where s(x) is the Dirac delta function and V is the gradient operator in the three-dimens- 
ional EucLidean space R3. 

It follows from (1.3) that S (.z)and Ic(.r generalized homogeneous functions ofpower- 3. 

--- 
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Let us consider the properties of operators S and K in (1.21. 
operators with generalized functions S(x) and K(x). In functions of 

1x l-+00 they decrease more rapidly than any power of It I) S and li' 
resentations /7/ 

They are convolution 
class S (KY (as 
admit the regular rep- 

~s(z-x')(p(5')f%r'=~s(x-x')cp(x')dt'+D~(x) 

Sh.(x- z')ccp(z')dz'= s K (x -x’) ccp (2’) dx’ + Accp (x) 

where (v E .S(RS)) and the integrals on the right exist and are taken 

(1.4) 

(1.5) 

in the sense of Cauchy's 

principal value, the constant tensors D and A are expressed in terms of Fourier transforms 
S(k) and K(k) and of functions S(x) and K(x)by formulas 

1 * 
S(k)&-& A== 

s 
K(k) dQ 

0% & 

(1.6) 

where Q, is the surface of a unit sphere in the k-th space of Fourier transforms. 
Let us now determine the effect of the action of operators S and K on the constant m,. 

The respective integrals formally diverge at zero and infinity. Note that the integrals 

s S (x - z’)m,dx’, l K (x - x’)cm,dx’ 

have the meaning of the fields of internal stresses and strains, respectively, in a homogene- 
ous medium containing dislocation moments of constant density m,,. If the medium deformation 
is not constrained at infinity, such distribution of dislocations does not result in the ap- 
pearance of internal stresses, but induces an additional._ constant ("plastic") deformation of 
the medium of magnitude equal to m,. Consequently in this case 

IS@-x’)m&‘=O, ~K(x-~~)cm&x’=mo (1.7) 

However, if the medium deformation is constrained at infinity, the result is obviously 
different. There is no unambiguous natural definition of operators S an K constants, and 
in specific problems the respective integrals are determined by their particular meaning. 

0n the assumption that deformations are not constrained at infinity, we use below form- 
ulas (1.7) and consider only homogeneous random crack sets in space. The density m(z) in 
(1.2) is also a generalized homogeneous random field. 

It can be shown that formulas (1.4)- (1.7) are sufficient for determining operators S 
and K on smooth homogeneous random functions. In the model of the random field m ft)these 
operators are continuously extended. 

2. Let us take one of the typical models of random crack sets homogeneous in space, and 
consider an arbitrary crack numbered i. If functions m(n(x) defined by formula (1.1) and 
appropriate to the considered model are known, the field ai that contains the i-th crack 
is by virtue of the first of formulas (1.2) of the form 

;5i(x)=c0+ z CS(x-_')Ill(h.)(X')~', x&l* (2.1) 
li*i* 

The field ?ii(x) defined by this formula at points of surface Qi can be taken as the 
external field of the i -th crack in which it behaves an an isolated one. 

Let us assume that the solution of the elastic problem for a crack isolated in an arbit- 
rary external field Ek(x) is known. This implies that function rntk) (t.B,,) is known in ex- 
plicit form. The system of equations that satisfies fields Z,(x) for each of the interacting 
cracks then follows from (2.1) and is of the form 

Gi (X) = 00 + z [ S (5 -2’) IIL(~) (2, k) dx’, ZERi, i = I, 2, . . . (2.2) 
MiL 

When the solution of this system is known , it is possible to obtain from (1.2) the stres- 
ses and strains in a medium with cracks. Fields ?i, (z) may be considered asthebasicunknowns 
of the problem. 

If the crack set is random, Zi(x) are random functions. The construction of statistical 
moments of fields ci(x) reduces to solving the problem of interaction between many cracks, 
which involves virtually unsurmountable difficulties. To make the problem more tractable it 
is necessary to introduce simplifying assumptions about the structure of random fields Ei (x). 

We shall assume the field 8i Cx) to be virtually constant in region Qi but, generally, 
different for individual cracks (hypothesis H, ) and consider all cracks to be plane and of 
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elliptic form. 
The solution of the problem of an isolated elliptic crack in a constant external stress 

field Zk shows that the quantities m (&)(z 3,) in (2.2) are determined by formulas , 

,&j (X,Gk) = Pg& (x)T$%& (x), PC”) (5) = P@'hk (4 (2.3) 

where the scalar function ha(x) determined at points of surface RA in the system of coordin- 
ates 511 52 attached to the principal axes of the crack is of the form 

where a,, and bi, are semiaxes of the ellipse RA, ah >b,. 
The constant tensor P(k) in (2.3) is of the form 

where for an isotropic medium T$ is of the form (no summation with respect to CC!) 

(2.4) 

d, = c1 + v (c? - 2c,), d: = c1 _t v (c5 - 2c,), d, = cl.‘2 

c3 = -cg + 3c, 

Cl = E (a)/1 - 2, c2 = c, - (E (a)--R(a))/a*, 

a = 1 - (bklak)* 

where [r is the shear modulus, v is the Poisson's ratio of the medium, &e is the Kronecker 
delta, and E(a) and K(a) are complete elliptic integrals of the first and second kind, 

We introduce the following notation: Q for a set of crack surfaces in space, and Q (2) 
for the delta function concentrated on Q . We fix some point x,E Sz and define region 8, 
by the formula 

QG = U !A* ZOERj 
ieil 

We denote the delta function concentrated on Q, by Q(=o; .t). 
Let P(x) be an arbitrary smooth tensorfieldcoinciding on surfaces Qak with ZJ@) (x) (see 

(2.3)). We introduce the field a(x) defined in region Q by the equation 

5 (I) = crO + 1 S (I - x’)P (x’)C (x’)Q (x, x’)dx’, x E 9 (2.5) 

The comparison with (2.2) and (2.3) shows that when the H, hypothesis holds, the field 
a(z) coincides in regions Qr with zh. We call Z(x) the effective field for a given set of 
cracks. 

In the first approximation it is possible to assume that the effective field 3(x) is 
constant and the same for all cracks (a similar idea was used in /9,10/ for solving the prob- 
lem of wave propagation in a medium with random inhomogeneities). This assumptionis evidently 
valid when the field of each crack weakly depends on the configuration of the set of surfaces 
Q, and is determined by the average combined field of all interacting cracks. Then, by 

averaging over the ensemble of models of random crack sets under the condition that XF: a. 
we obtain 

a=a,tJ'S(x- 5') < P (x’)SJ (x; x’) J x> dz’E (2.6) 

where it is taken into consideration that 5 = const for zE 8, and (+ 1 x) implies averaging 
under the condition that % E a. 

The problem has been, thus, reduced to the construction and calculation of the integral 
in (2.6). Since for a uniform field of cracks the average of the integrand which is a func- 
tion of the remainder I-X', the integral is some constant. Solving (2.6) for the tensor 'ij 

we obtain 

ijabe = ;\t$yOar (2.7) 

A = [I -SS(x- 5') < P (x')Q (x; 2') 13 > dir’ (2.8) 

where I is a unit tensor of the fourth rank. 
Let us determine the mathematical expectations of the stress and strain fields in a med- 

ium with cracks. Substituting &0(s, ;i) of form (2.3) into (1.1) and, then, its result into 
(1.2), and averaging the obtained expressions for o(x)and e(z) over the ensemble of crack sets, 
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we obtain 

(0 (5)) = ug + j s (5 - z') (P (s')hl (I')) c$x*ij, (E (2)) = E. -k j- K (Z - s’)c (P (z’)Q (2’)) dx’ii (2.9) 

For a set of cracks uniform in space the average (P(x)z)n(z)> is a constant quantity. The 
action of operators S and K on constants is determined by formulas (1.71, hence from (2.9) 
follows that 

(a (5)) = ao. <s (J$> = so + (P (GJ WE (2.10) 

We introduce the effective compliance tensor B, for a medium with cracks by the natural 
relation 

(6 = B, (0) (2.11) 

which together with (2.10) and (2.7) yieldstheequality 

B, = B +- (P (z)Q (z)> A, B = c-l (2.121 

where A is of the form.(2.8). 
Let us compare the method of effective field for determining the tensor of effective 

elastic constants with the method of effective medium /i- 3/ based on the assumption that each 
crack behaves as an isolated one in a homogeneous medium whose properties are the same as the 
effective properties of the whole medium with cracks. The external field of any crack is as- 
sumed equal to co. 

On these assumptions formulas (1.2) for a(z) and E (z)in the case of a medium with ellip- 
tic cracks assume the form 

o(x) =ao+ f s(~-z')P*(~')it(5')dz)an, e(s)-EO+ s K(~-5’)eP,(~‘)12(s’)dZ)~o (2.13) 

where functions P*(")(x) , although of a form similar to that shown in (2.3), are determined by 
solving the problem of an isolated elliptic crack in a homogeneous medium with the elastic 
pliability tensor B,. The equation for B,is obtained from the self-consistency condition 
which conforms to (2.111. Averaging expressions (2.131 for u(t) and e(z)), then acting by 
operators S and K on the constant (P*(ct)Q(t): , and substituting the result into (2.111, we 
obtain 

B* = B + (p. (s)Q (m)) (2.14) 

This relation which links the components of tensor B,is to be considered as the equation 
of the effective elastic constants of a medium with cracks (these constants appear in the right- 
hand side of #is equation because of the tensor P*(X) whose explicit expression is assumed 
known). 

3. Let us analyze some specific models of random crack sets in space. The ergodicity of 
the considered random functions assumed below, enables us to substitute averages over volume 
for averages over ensembles of models for a fixed typical model. Thus, for example, 

(3.1) 

where 1‘ is a region of volume v in RS, which at the limit occupies the whole space, N is 
the number of cracks contained in I', and Pfk) (s) and PCk) are of the form appearing in (2.3) 
and (2.4). 

In the ensemble of models of the random field P(x)Q (z) tensors ai P(k) are random quant- 
ities with one and the same distribution function for all k. Averaging once more both sides 
of (3.1) over the ensemble of models, we obtain 

(3.2) 

where u. is the average volume of a single crack. 
p (Q, b), 

The average random tensor a”P(a, b), where 
which appears here in the right-hand side, is of the same form as pm ; its value is 

determined by the distribution of random semiaxes a and b and of its random orientation. 
Let us consider the conditional average in (2.6) and (2.8). By the definition of the 

condition mean we have 
~(x-~‘)=<P(5’)sz(z;s~)~s~= 

\‘P (I’) R (2; 2’) R (z), 
62 (z)> (3.3) 
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Similarly to (3.1) we have 

13.4) 

Let us consider some examples of stochastic crack sets in space. 

lo. The Poisson set of cracks. Let the bounded volume 1' contain JV cracks whose 
dimensions and orientations are random quantities with known distribution functions. The 
coordinates of crack centers are independent random quantities uniformly distributed in V. 
Making V and N approach infinity so that uiN-,u,<oo. we obtain a set of cracks which is 
uniform in space, which we shall call the Poisson set. By virtue of the uncorrelated position 
of crack centers in the Poisson set we have 

<P (z’)Q (2; x’)Q (x))> = (P @‘)a (ic; 2’)) (Q (x)) 

where similarly to (3.1) 
I? 

~P(z')Sl(i;~t')) = lim +- '% 3 

c 

(Jib 
P-em 

+P =$<dP(a, aI> 
-1 

(3.5) 

(3.6) 

where the prime at the summation symbol means the omission of the term TCQ 2s apc0 for XE Bi, 
as implied by the definition of function n (t; t'). 

Thus generally y(z)= const (except for the set of points x of zero measure). By virtue 
of (1.7) the integral in (2.6) and 12.81 vanishes, and formulas (2.121 forB,assumes the form 

B .x=-B + g (a3P (5, b)) (3.7) 

in which allowance is made for (3.2). 
In the case of circular cracks of random radius a in an isotropic medium from this form- 

ula we obtain 

in which summation is carried out with respect to random orientation of cracks n (the random 
quantity a is assumed independent of n). 

When the distribution with respect to orientations is uniform,B*is an isotropic tensor, 
and the effective shear modulus p* and the Poisson's ratio v,of a medium with cracks assume 

the form 

(3.9) 

2'. Model with restriction on crack intersection. Let us consider a Poisson's 
model with one additional condition. Let the neighborhood (for instance, spherical) of each 

crack be such that the probability of other crack centers reaching it is small, and a short- 
range order obtains in the random set of cracks. Function Y(z) defined by formulas (3.3) is 
zero in some neighborhood of the coordinate origin (point z = 0). As !-z-z’ ~---too the cor- 
relation of crack positions vanishes and 

‘r (I - I’) - -+f- :a3P (a, b)) = Y+ 
0 

(the quantity Yy, is the same as Y(r) for the Poisson set of cracks f3.6)). 
When the crack concentration is not excessive, then, owing to the isotropy of the model, 

W(z), spherically symmetric 'It(r)= Y(].z I) and the integral in (2.6) and (2.8) is of a part- 
icularly simple form 

jS(x- x')Y (I - s')dz' = J s (X - z')[Y (x - 5') - Y*ldz' - --DY* 

where allowance is made for formulas (1.4) and (1.7), tensor D is of the form t1.6), and the 

integral appearing in (1.4) in the sense of principal value vanishes owing to the spherical 
symmetry of 'P(z). 

For B+ we obtain from (2.11 an expression of the form 
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In the case of an isotropic medium and uniform orientation distribution we obtain from 
this 

(3.10) 

where q is the same as In (3.8). 
The above formulas WEB% derived on tbhe assumption that all cracks expand in the external 

stress fieJ.d, But this is not true for all external fields. A part of the cracks or evenall 
of them may close, thus affecting the effective elastic constants. A method for allowingfor 
cracks closed by ffie external field was considered in /Xl/. 

Let ua now consider the formula provided by the method of effective medium for the ten- 
sor of effective elastic constants. Equation (2.14) with allowance Par: (3.2) is of the form 

where P,is detenmined from the solutiopt of the problem of an elliptic Creek in a me&urn with 
the elastici%y tensor B*. 

Let an isotropic medium Contain a homogeneous set of circular cracks uniformly distribut- 
ed with respect to orientation. The medSum is assumed macroisentroplc and B, defined by form- 
ula of the form 

Whera the quantities q, P, 1” are thuse defined fn 13.8) and f3.101, 
From this, for the effective elastic constants p* and T* of a m&Furs With cracksJ, we 

obtain formulas 

of which tk 3ast may be considered as the equation for I+ This result was obtained in i3i, 
It was noted in f3/ that for q3*hb the shear modulus kg. in (3.12) becomes negative,and 

these farmullfs loose any physical meaning. Note that vu and v+ calculated by the m&hod of 
effective field in the cm@ of a Poiseon set of cracks (3.9) are always positive. Jln the case 
of a model with restriction on crack intersections the components of B. (in (3-10)) vanish for 

6~2 so that also here the region, whexe the method of effective field yield physically 
inconsistent results, is one and a half times wSer. (For small q bclth me*ods yiel& the 
same effective elastic coristantsl, 

One mm point should be mentioned. The constxuctian of tensor I$ and the solution of 
Eq.(3.11) lis technically extremely complicated in the case of arbitrary anisotropy of tensor 

P*. B8cauSe of this, the method of effective medium is applied only when an inhomogeneous 
medium is macroisotropic. On the other hand, the method of effective field does not introduce 
any additional technical difficulties in the determination of B, when applied to a macroaniso- 
tropic medium. 

4. Let us now consider the plane problem, The formalism of the methodofeffeetivefiefd 
is appficabI&a in the plane case without any fundamental. alterations, 
ent here only the final expressions for the effective 

Because of this,wepres- 

was considered in detail in /12/). 
elastic constants (the plane problem 

In the plane case a straight slit is the analog of the elliptic crack. For a Poisson set 
of straight cracks of random length 2E unifamly aistsSbucea with respect to orientertionsthe 
medium is macroisotropic, and the %xzng's~iac~u~~s E,an& Poismn's ratio v* ae of +&he fom 

(4.1) 

where E and v are the elastic constant@ of the original isotropic medium, and o. is the 
average area of a crack. 

For an initially isotxapic medium model with restrictPon on the intersection of cracks 
uniformly distributed with respect to orientation,tbe affective elastic constants axe deter- 
mined by fora?uias 
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The curves I, 2, and 3 shown in Fig.1 represent, respectively, functions (4.1), (4.2) and 
(4.3). Thy are compared there with experimental data cited in /l.3/. Experiments were car- 
ried out on thin rubber sheets with a set of rectilinear through slits (u=o.s). Experimental 

data axe approximated by the dash line with small circles for 
(E&Z) and by dash-dot line for (v&. 

The Statistical mEdySiS sfiaws that the set of cracks 
investigated in /13/ is satisfactorily defined by the model 
with restriction on crack intersections. The forrkulas for 
the effective elastic constants obtained for this Mode1 are 
in good agreement with experimental data. 

Note that in this caee the method of effective medium 
yields for E, and \)+ the following expressions: 

Fig.1 
to which the straight line 4 corresponds in Fig-l. 

5. The method of effective field waa used above for calculating the effective elastic 
constants of a medium with cracks. The possibilities of this method are, however, not limited 
to such cases. The method was applied in 1141' for constructing the first two statistical mom- 
ents of the solution of the problem of constant electric current in a medium with a large 
number of cracks. Besides the X, hypothesis on the constancy of the effective field for each 
crack, the hypothesis of statistical independence of that field in region a# from the orient- 
ation and eize of the crack Dh. (the NB hypothesis) was used there, It is possibletoobtain 
on these assumptions closed equations for the second statistical moMent of the effective field 
and, then using it, to determine the second statistical moment of solution. The‘second moments 
of the problem of the theory of elasticity considered here can be similarly obtained. 

We stress that the hypotheses on which this method is based relate to the approxfmation 
of the state of each crack in an inbomogeneous medium. With increased crack concentration 
these hyp&heses provide an increasingly rought description of the state of cracks. However, 
this may weakly affect the accuracy of determination of the first and second statistical mom- 
ents of solution which are of the greatest interest in applications. These moments are in 
themselves fairly rough statistical characteristics with part of the information about details 
of crack behavior is certainly lost in them. Because of this an exact definition of the state 
of each crack in the calculation of the first two moments of the solution is h~~aLy jwtff&ed- 

AS shown by t&e resufts of the present investigations and of those Fni4,12/, the method 
of effective fie1d makes possible a satisfactory description of the results of experimental 
determination of the effective elastic constants and , also, provides a good correlation with 
the exact valuesofthese constants inthecaseof the lattice of inclusions and Creaks in a 
plane. 
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